
Communication Complexity: Lecture 2

Nathan Harms

January 16, 2026

1 Recap & Warm-Up

To help recall the previous lecture, let’s define a new communication problem.

Definition 1.1 (Greater-Than). The Greater-Than communication problem on integers
i, j ∈ [N] is defined as

GTN (i, j) =

{
1 if i > j

0 if i ≤ j

Using what we learned in the previous lecture, we can answer the following question:

Exercise 1.2. What is the communication complexity of Greater-Than, and what is its matrix
form?

2 Rank

The topic of this lecture is the relationship between communication complexity and rank. Recall
several definitions of the rank of a matrix.

Theorem 2.1. Let M ∈ Rm×n be any matrix and define the following.

1. Let r1 be the maximum size |R| of a set R ⊆ [m] such that rows R of M are linearly indepen-
dent.

2. Let r2 be the maximum size |C| of a set C ⊆ [n] such that columns C of M are linearly
independent.

3. Let r3 be the minimum value such that there exist U ∈ Rm×r and U ∈ Rr×n such that
M = UV .

4. Let r4 be the minimum value such that there exist vectors u1, . . . , ur ∈ Rm and v1, . . . , vr ∈ Rn

that satisfy M =
∑r

i=1 uiv
⊤
i .

Then r1 = r2 = r3 = r4.

This quantity is the rank of M , denoted rank(M).

Proof. Exercise for the reader. ■

1

From this proof we can deduce some extra facts about boolean matrices M ∈ {0, 1}m×n that
are useful for communicaton complexity.

Corollary 2.2. Let M ∈ {0, 1}m×n. Then:

1. rank(M) is the minimum r such that there exists a submatrix V ∈ {0, 1}r×n of M , and
U ∈ Rm×r, such that M = UV .

2. rank(M) is the minimum r such that there exists a submatrix U ∈ {0, 1}m×r of M , and
V ∈ Rr×n, such that M = UV .

Theorem 2.3. There is an algorithm which computes the rank of a given matrix M ∈ Rn×n using
at most O(n3) arithmetic operations.

3 Lower Bounds via Rank

Let’s see how to prove lower bounds on communication complexity using the rank of a matrix.

Theorem 3.1. For any M ∈ {0, 1}m×n that is not the all-1s matrix,

log(rank(M) + 1) ≤ D(M).

Before proving the theorem, recall the standard transformation between sets and boolean vec-
tors:

Definition 3.2. Let S ⊆ [n] be any set. We say a vector u ∈ {0, 1}n indicates S if

∀i ∈ [n] : xi = 1 ⇐⇒ i ∈ S.

Proof of Theorem 3.1. We will show that rank(M) + 1 ≤ 2D(M). Recall that χ1(M) ≤ 2D(M), so
for k = χ1(M) there exists a collection P1 = {R1, . . . , Rk} of disjoint 1-monochromatic rectangles
Rℓ = Xℓ × Yℓ which partition the 1-entries of M .

For each ℓ ∈ [k], let uℓ ∈ {0, 1}m, vℓ ∈ {0, 1}n be the vectors which indicate the sets Xℓ and Yℓ
respectively. By definition, the matrix uℓv

⊤
ℓ satisfies

(uℓv
⊤
ℓ)i,j = 1 [i ∈ Xℓ] · 1 [j ∈ Yℓ] = 1 [(i, j) ∈ Rℓ] .

Since the rectangles Rℓ partition the 1-entries of M , we have

M =

k∑
ℓ=1

uℓv
⊤
ℓ .

Therefore, by the 4th definition of rank, rank(M) ≤ k = χ1(M). Since M is not the all-1s matrix,
χ(M) ≥ χ1(M) + 1, so

log(rank(M) + 1) ≤ log(χ(M)) ≤ D(M). ■

We can use Theorem 3.1 to prove lower bounds on communication complexity. To give an
example, let’s define one of the most important communication problems.

2

Definition 3.3 (Disjointness). The function Disjn : {0, 1}n × {0, 1}n → {0, 1} is defined as

Disjn(x, y) =

{
0 if ∃i ∈ [n] : xi = yi = 1

1 otherwise.

In other words, Disjn(x, y) = 1 if x and y indicate disjoint sets. (We say x ∈ {0, 1}n indicates
a set S ⊆ [n] when xi = 1 if and only if i ∈ S.)

This problem is one of the most important for applications that we will see later. Let’s prove
an optimal lower bound on the communication complexity of Disjointness:

Theorem 3.4. D(Disjn) = n+ 1.

To prove this theorem, we’ll use a fact about rank. First define the tensor product of two
matrices A ∈ Rm×n, B ∈ Rm′×n′

, denoted A⊗B ∈ Rmm′×nn′
, as

A⊗B ..=


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
...

Am1B Am2B · · · AmnB


Rank behaves well with respect to the tensor product:

Fact 3.5. rank(A⊗B) = rank(A) · rank(B).

Proof of Theorem 3.4. An upper bound holds from the general communication upper bound of
n+1. For the lower bound, we will show that the matrix has full rank. Write Dn ∈ {0, 1}2n×2n for
the communication matrix of Disjn. Observe that

D1 =

[
1 1
1 0

]
and therefore rank(D1) = 2. Now considerDn for n > 1. We may assume that the rows and columns
are both ordered lexicographically, i.e. 0000, 0001, 0010, . . . , 1111. In that case, the communication
matrix may be written

Dn =

[
Dn−1 Dn−1

Dn−1 0

]
= D1 ⊗Dn−1.

Therefore, by Fact 3.5,
rank(Dn) = 2 · rank(Dn−1).

By induction, we conclude that rank(Dn) = 2n. So

D(Disjn) ≥ log(rank(Dn) + 1) > n. ■

4 Is the rank lower bound optimal?

Let’s say you want to prove a lower bound for your favorite problem. Now you know you can try
to calculate the rank. But you may wonder, is it possible that this technique will fail?

The rank technique would fail if both of the following were true:

3

1. rank(M) is small; but

2. D(M) is big.

Can this happen?
One of the most famous open problems in communication complexity is to answer this question.

There is a conjecture that the answer is (essentially) no, this can’t happen:

Conjecture 4.1 (Log-Rank Conjecture). There exists a constant c such that, for every
matrix M ∈ {0, 1}m×n,

D(M) ≤ O(logc(rankM)).

This conjecture is from László Lovász and Mike Saks in 1988 [LS88]. If the conjecture is true,
meaning that rank would always tell you the communication complexity, up to a polynomial factor.
Recall from last time the open problem of computing an approximation D(M) in polynomial-time.
If the log-rank conjecture is true, we can accomplish this by computing the rank.

5 Progress towards the log-rank conjecture

It may not even be obvious that there is any function ϕ for which D(M) ≤ ϕ(rank(M)). Let’s start
with this, and then catch up to the state of the art on this conjecture.

5.1 D(M) ≤ rank(M)

Theorem 5.1. For all M ∈ {0, 1}m×n, D(M) ≤ rank(M) + 1.

The main step in this proof is the following, which will also be useful later.

Proposition 5.2. Let M ∈ {0, 1}m×n. Then the number of distinct columns in M is at most
2rank(M). The same bound holds for the number of distinct rows.

Proof. Let r = rank(M). Recall from Corollary 2.2 that we may write

M = UV

where U ∈ Rm×r and V ∈ {0, 1}r×n. Observe that V contains at most 2r distinct columns, because
it is a boolean matrix with r rows.

Column i of M is UV(·,i) where V(·,i) denotes the ith column of V . Therefore, if columns i, j
of M are distinct, columns i, j of V must also be distinct. We conclude that there are at most 2r

distinct columns in M , since there are at most 2r distinct columns in V . ■

We may now prove D(M) ≤ rank(M) + 1.

Proof of Theorem 5.1. Since M ∈ {0, 1}m×n has at most 2r distinct rows, for r = rank(A), we may
assign each row a number in {0, . . . , 2r} indicating its equivalence class.

On input x, y ∈ {0, 1}n, Alice uses r bits to sends the number in {0, . . . , 2r} that indicates its
equivalence class. Bob may now determine the entry in the matrix and send it to Alice. ■

4

5.2 Some sad progress

We would like to improve exponentially on our bound D(M) ≤ rank(M) + 1 in order to prove the
log-rank conjecture. We don’t know how to do that. In fact we are not even close. The best upper
bound that we know is from Benny Sudakov and Istvan Tomon in 2024:

Theorem 5.3 ([ST25]). For all boolean matrices M , D(M) = O(
√
rank(M)).

This follows a breakthrough of Shachar Lovett in 2014:

Theorem 5.4 ([Lov14]). For all boolean matrices M , D(M) = O(
√

rank(M) log(rank(M))).

We will look at an easier proof giving D(M) = O(
√
rank(M) log2(rank(M))) below.

What about trying to disprove the conjecture? Mika Göös, Toni Pitassi, and Thomas Watson
showed in 2018:

Theorem 5.5 ([GPW18]). There exist boolean matrices M such that D(M) =
Ω̃(log2(rank(M))).

A lot of work yet remains...

5.3 An equivalent conjecture

All of the upper bounds mentioned above have used an equivalent version of the conjecture due to
Noam Nisan and Avi Wigderson in 1995 [NW95]. This equivalent conjecture says that small-rank
matrices have very large monochromatic rectangles:

Conjecture 5.6. There exists a constant c such that every M ∈ {0, 1}m×n with rank(M) = r
has a monochromatic rectangle with mn · 2−O(logc(r)) entries.

Observe that any boolean matrix M ∈ {0, 1}m×n must have a monochromatic rectangle with
at least mn · 2−D(M), because each leaf of the protocol is a monochromatic rectangle and there are
at most 2D(M) leaves. This means that the log-rank conjecture implies Conjecture 5.6.

On the other hand, we will show that Conjecture 5.6 also implies the log-rank conjecture, so
they are equivalent. Indeed, every improved upper bound on D(M) has worked by finding a large
monochromatic rectangle.

Theorem 5.7 ([NW95]). Suppose that every boolean matrix M ∈ {0, 1}m×n of rank r has
a monochromatic rectangle containing mn · 2−q(r), where q is any non-decreasing function.
Then for all boolean matrices M of rank r,

D(M) = O(q(r) log r).

As a consequence, Conjecture 4.1 is equivalent to Conjecture 5.6.

5

Actually, they proved the bound

D(M) = O

(
log2 r +

log r∑
i=1

q
(r

2i

))
,

which is necessary to obtain the bounds in Theorems 5.3 and 5.4, but this is not necessary for our
purposes. To prove our theorem, we need to recall a theorem from last time:

Theorem 5.8. Let M be a boolean matrix and suppose there is a communication protocol computing
M with ℓ leaves. Then D(M) = O(log ℓ).

Proof of Theorem 5.7. Let M ∈ {0, 1}m×n have rank r. First, we may assume without loss of
generality that mn ≤ 22r. This is because of Proposition 5.2; we may delete duplicate rows and
columns without changing the rank or the communication cost.

Our goal is to design a protocol computing M with a small number of leaves, and then apply
Theorem 5.8. By assumption, M contains a monochromatic rectangle with at least mn · 2−q(r)

entries. Then, by permuting M , we may write

M =

[
A B
C D

]
where A is a monochromatic rectangle with mn · 2−q(r) entries. Then our communication protocol
will be simple. On inputs x, y ∈ [m]× [n]:

1. In the base case, fix any constant c. If rank(M) ≤ c for any constant c, or min{m,n} ≤ 2c,
then we can compute M using at most c+ 1 bits of communication.

2. If rank
([
A B

])
≤ rank

([
A
C

])
, we partition the rows of M as

M =

[
A B

C D

]
and Alice sends 1 bit to Bob indicating whether her row x is in the top part or the bottom
part.

3. If rank
([
A B

])
> rank

([
A
C

])
, we partition the columns of M as

M =

[
A | B
C | D

]
and Bob sends 1 bit to Alice indicating whether his column y is in the left part or the right
part.

4. Recurse on whichever part of M the entry (x, y) is contained in.

This protocol will terminate in some number of rounds, call it k, because the size of the matrix
decreases in each iteration. It will be correct because it terminates in case (1). Now, we calculate
the number of leaves in this protocol.

Consider any input (x, y). We will assign a string t(x, y) that describes the operation of the
protocol on (x, y). For each round i ∈ [k], we assign:

6

• Symbol R if we recursed on the lower-rank part of the matrix;

• Symbol S if we recursed on the higher-rank part of the matrix;

• Symbol T at the final round k, when we reached step 1 of the protocol.

The operation of a protocol is therefore described by a string t(x, y) ∈ {R,S}k−1 (we are ignoring
the terminal T symbol which is the same for every input). To bound the number of leaves, we must
bound the number of possible strings. The first step is to bound the number of R and S symbols,
which we do using the following two claims:

Claim 5.9. For all x, y, the number of S symbols in t(x, y) is at most 2r · 2q(r) · ln(2).

Proof of claim. Matrix M begins with mn entries. Let M (i) denote the matrix after round i, so
M (0) = M and M (k−1) has either rank ≤ c or number of entries ≤ 2c, since step 1 of the protocol is
executed in round k. Observe that entries(M (i)) ≤ entries(M (i−1)), where entries(A) denotes the
total number of entries in the matrix A.

Now observe that, if round i is labelled S, it must be the case that

entries(M (i)) ≤ entries(M (i−1)) · (1− 2−q(r)).

This is because M (i) is obtained by removing part of the matrix containing the monochromatic
rectangle A which contains at least entries(M (i−1)) · 2−q(r) entries (observe that rank(M (i−1)) ≤
rank(M) = r.

Therefore, if b is the number of S symbols in t(x, y), we have

1 ≤ entries(M (k−1)) ≤ entries(M) · (1− 2−q(r))b.

Using the inequality 1− x ≤ e−x, we have 1 ≤ mn · e−2−q(r)b. So,

b ≤ 2q(r) ln(mn) ≤ 2q(r) ln(22r) = 2r · 2q(r) · ln(2),

where we use the bound mn ≤ 22r. ■

Next, we need to bound the number of R symbols.

Claim 5.10. For all x, y, the number of R symbols in t(x, y) is at most O(log r).

Proof. It will suffice to prove that, when A is a rank-1 matrix,

rank

([
A B
C D

])
≥ rank

([
A B

])
+ rank

([
A
C

])
− 3. (1)

If we can prove Equation (1), then we can complete the proof as follows. Suppose the ith round of
t(x, y) is labelled R. Then we have

M (i−1) =

[
A B
C D

]
where A is a monochromatic rectangle. Since A is a monochromatic rectangle, it is rank 1. Suppose

rank
([
A B

])
≤ rank

([
A
C

])
, so M (i) =

[
A B

]
. Then from Equation (1),

rank(M (i)) ≤ 1

2

(
rank(M (i−1)) + 3

)
≤ 3

4
rank(M (i−1))

7

since rank(M (i−1)) ≥ 12 (if we choose c ≥ 12 in step 1 of the protocol). A similar argument holds

if rank

([
A
C

])
≤ rank

([
A B

])
. Now, similar to the proof of the earlier claim for R symbols, if b

is the number of R symbols in t(x, y), then

1 ≤ rank(M (k−1)) ≤
(
3

4

)b

rank(M),

so b = O(log r).
Now we must prove Equation (1). First, observe that

rank

([
0 B
C D

])
≤ rank

([
A B
C D

])
+ 1,

which follows from the 4th definition of rank (an exercise left to the reader). Using the 1st definition
of rank, one can also show

rank

([
0 B
C D

])
≥ rank(B) + rank(C).

(Again, an exercise.) Finally, using the 4th definition of rank again,

rank(B) = rank
([
0 B

])
≥ rank

([
A B

])
− 1,

and similarly rank(C) ≥ rank

([
0
C

])
− 1. Putting these together gives Equation (1). ■

We may now bound the number of leaves of the protocol. Each leaf is assigned a string in
{R,S}k where the number of S symbols is at most 2r · 2q(r) · ln(2) and the number of R symbols is
at most O(log r). Therefore k = 2r · 2q(r) · ln(2) + O(log r) and the number of strings (i.e. leaves)
is at most (

k

O(log r)

)
≤ kO(log r).

Then by rebalancing the protocol, we obtain

D(M) = O
(
log
(
kO(log r)

))
= O

(
log(r) · log

(
r · 2q(r)

))
= O (q(r) log(r)) . ■

References

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. SIAM Journal on Computing, 47(6):2435–2450, 2018.

[Lov14] Shachar Lovett. Communication is bounded by root of rank. In Proceedings of the
Symposium on Theory of Computing (STOC), 2014.

[LS88] László Lovász and Michael Saks. Lattices, mobius functions and communications com-
plexity. In Proceedings of the Symposium on Foundations of Computer Science (FOCS).
IEEE Computer Society, 1988.

[NW95] Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combinatorica,
15(4):557–565, 1995.

[ST25] Benny Sudakov and István Tomon. Matrix discrepancy and the log-rank conjecture.
Mathematical programming, 212(1):567–579, 2025.

8

	Recap & Warm-Up
	Rank
	Lower Bounds via Rank
	Is the rank lower bound optimal?
	Progress towards the log-rank conjecture
	D(M) `3́9`42`"̇613A``45`47`"603Arank(M)
	Some sad progress
	An equivalent conjecture

