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1 Introduction

Communication is inherent in any computation. When performing any calculation, information
must flow from one place to another: across wires in a circuit, between machines in a data center,
across internet connections, even between nature and scientists trying to learn about it. As a con-
sequence, understanding the amount of communication required to solve problems is fundamental
to understanding computation, and has become central to theoretical computer science.

The study of communication complexity was initiated by Yao in 1979 [Yao79].

Definition 1.1 (Communication Problem). A communication problem is a function f : X ×
Y → Z that takes two inputs.

Let’s begin with a very informal definition of a communication protocol. We will formalize it
later.

Definition 1.2 (Communication Protocol (Informal)). For a communication problem f : X×
Y → Z, two players Alice and Bob agree in advance on a communication protocol, which
proceeds as follows. Alice receives an input x ∈ X , Bob receives an input y ∈ Y, and they
cooperate to compute f(x, y) by taking turns sending messages (binary strings) to each other
according to the protocol.
The cost of the protocol on inputs (x, y) is the total number of bits communicated between
Alice and Bob to compute f(x, y). The cost of the protocol is

max
(x,y)∈X×Y

cost of protocol on inputs (x, y).

The cost of a problem f is denoted D(f), and it is the minimum cost of any protocol com-
puting f .

Here is a problem that has very low communication cost:

Example 1.3 (Parity). Consider the function parity : {0, 1}n × {0, 1}n → {0, 1} defined as

parity(x, y) ..=

{
0 if number of 1s in xy is even

1 if number of 1s in xy is odd

Here is a protocol that solves this problem. Alice receives x, Bob receives y. Alice sends |x| mod 2
(the number of 1s in x mod 2) and Bob sends |y| mod 2 back. They output |x|+ |y| mod 2. The
cost of the protocol is 2.
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Here is a problem with very high communication cost:

Example 1.4 (Equality). The function Equality : {0, 1}n × {0, 1}n → {0, 1} is defined as

Equality(x, y) ..=

{
1 if x = y

0 if x ̸= y

Here is a protocol that solves this problem. Alice receives x, Bob receives y. Alice sends x itself.
Bob sends back 1 if x = y and 0 otherwise. The cost of this protocol is n+ 1.

Later, we will prove that this protocol for Equality is optimal.

Theorem 1.5. The cost of Equality on n-bit inputs is n+ 1.

2 Selected Applications of Communication Complexity

Before making the above definitions formal, let’s jump to some examples of communication com-
plexity, to get a taste for the variety of areas where it is useful.

2.1 Time and Space Tradeoffs for Turing Machines

Our first application can be understood using only our informal definition. In this theorem, we
consider multi-tape Turing machines, with a read-only input tape, any fixed number of work tapes,
and a binary alphabet. The space complexity S(n) of a Turing machine with k work tapes is

max
x∈{0,1}n

k∑
i=1

ℓi(x)

where ℓi(x) is the largest index on the ith work tape that the ith tape head reaches during the
execution on x. The time complexity T (n) is the maximum number of time steps executed by the
machine on any input x ∈ {0, 1}n (or ∞ if there is x ∈ {0, 1}n where it never halts).

Theorem 2.1 ([KN96]). Let L ..= {wwR|w ∈ {0, 1}∗} be the language of palindromes (where
wR is w in reverse order). Let M be any multi-tape Turing Machine deciding L in time T (n)
and space S(n) on n-bit inputs. Then

T (4n) · S(4n) = Ω(n2).

Proof sketch. Let M be any Turing machine deciding L. We will design a communication protocol
for the Equality problem. For any n, Alice and Bob perform the following protocol. Given
x, y ∈ {0, 1}n:

1. Alice and Bob each simulate M on input x02nyR, where yR is y in reverse order, as follows.
The input and work tape heads both start at position 0. Initialize the current player to Alice.
At each time t:

(a) If the current state of M is a halting state, halt and output the decision.

2



(b) If the current player is Alice, the input tape head is guaranteed to be in the prefix x02n,
which Alice knows. Alice simulates step t of M . If the input tape head stays in x02n

then continue without communication. Otherwise the tape head moves to the suffix yR;
in this case, Alice sends the contents of the work tape to Bob, together with the new
state of M , and Bob becomes the current player.

(c) If the current player is Bob, the input tape head is guaranteed to be in the suffix 02nyR,
which Bob knows. Bob simulates step t of M . If the tape head stays in the suffix 02nyR

then continue without communication. Otherwise the tape head moves to the prefix x;
in this case, Bob sends the contents of the work tape to Alice, together with the new
state of M , and Alice becomes the current player.

The protocol computes Equality because x = y if and only if x02nyR ∈ L. The cost of the
protocol can be calculated as follows:

1. Each message sent by Alice or Bob contains the contents of the work tape, which is at most
S(4n) bits, together with the current state of M , which is O(1) bits.

2. The number of messages sent in the protocol is at most T (4n)/2n, because the input tape
head must cross the center 02n between each round of communication, which takes time at
least 2n.

Therefore
D(Equality) = O (S(4n) · T (4n)/n) .

From Theorem 1.5, we know D(Equality) = Ω(n), which concludes the proof. ■

2.2 Circuits

Theorem 2.2. The smallest depth of a circuit computing any function f : {0, 1}n → {0, 1}
is equal to the cost of the optimal communication protocol of the Karchmer-Wigderson Game
defined by f .

And many more...

2.3 Learning Theory

Theorem 2.3 ([PS86]). A concept class H can be represented as Θ(d)-dimensional halfspaces
if and only if its matrix representation has unbounded-error randomized communication cost
log(d) +O(1).

Theorem 2.4 ([FX14]). The sample complexity of PAC learning with pure differential pri-
vacy is equivalent to one-way public-coin randomized communication cost.

And many more...
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2.4 Property Testing

Theorem 2.5 ([BBM12]). Testing whether an unknown function f : {0, 1}n → {0, 1} is
either the parity function on some subset of k bits, or is 1/2-far from all such functions,
requires Ω(k) queries of the form x 7→ f(x).

2.5 Graph Theory

Theorem 2.6 ([EHZ24]). For all N ∈ N, there is a graph on poly(N) vertices which contains
all N -vertex subgraphs of the hypercube as subgraphs.

And many more...

3 Formal Definition and Communication Matrices

The formal definition of a communication protocol is annoyingly tedious:

Definition 3.1 (Deterministic Communication Complexity). Let f : X ×Y → Z be a func-
tion on any (finite) domains X ,Y. A communication protocol Π for f consists of:

1. A binary tree T with inner nodes V (T ) and leaves L(T );

2. A function player : V (T ) → {A,B} (which indicates whether it is Alice’s or Bob’s turn
to speak at each node);

3. A set of functions mv,p : X ∪ Y → {0, 1} defined for each inner node v ∈ V (T ) and
player p ∈ {A,B};

4. A set of labels ℓ : L(T ) → {0, 1} which indicate the output of the protocol at each leaf.

On input (x, y) ∈ X × Y, the protocol proceeds as follows. The current node variable v is
initiated at the root of T . In each round:

• If v has reached a leaf, output ℓ(v) and terminate the protocol.

• If player(v) = A (i.e. it is Alice’s turn to speak), then v moves to its left child if
mv,A(x) = 0 and to the right child if mv,A(x) = 0.

• If it is Bob’s turn to speak, then do the same, with y as the input instead.

We write Π(x, y) for the output of the protocol on input x, y, and the output is required to
satisfy Π(x, y) = f(x, y) for all x, y.
The cost of a protocol Π is the depth of the tree T . The cost D(f) of a function is the
minimum cost of any protocol computing f .

Communication problems are equivalent to matrices, and indeed we will usually think of them
as matrices.
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Definition 3.2 (Communication Matrix). Let X and Y be finite sets, and let f : X ×Y → R
be a communication problem. Then the communication matrix of f is the matrixMf ∈ RX×Y

with rows indexed by X and columns indexed by Y, defined by

∀(x, y) ∈ X × Y : Mf (x, y) ..= f(x, y).

Example 3.3 (Parity). Recall the Parity problem par(x, y) ..= (|x| + |y| mod 2). The commu-
nication matrix looks like a checkerboard.

Example 3.4. Recall the Equality problem Eq : {0, 1}n × {0, 1}n → {0, 1} where Eq(x, y) = 1
iff x = y. The communication matrix of Equality is the identity matrix.

It can be helpful to think of every boolean-valued communication problem f : X × Y → {0, 1}
as the adjacency relation on some bipartite graph G with vertices X ∪ Y, as follows. Let G be the
bipartite graph with edge set

{(x, y) | f(x, y) = 1}.

Therefore f(x, y) = Adj(x, y) where Adj(x, y) is the adjacency function for the graph G. Note
that the communication matrix Mf is the adjacency matrix of G.

4 Open Problems: Computing Communication Complexity

Open Problem 1. Are there constants c ≥ 1, L1, L2 such that there exists a polynomial
time algorithm for the following problem? Given a matrix M ∈ {0, 1}N×N , output a number
k such that L1 · k ≤ D(M) ≤ L2 · kc.

The most famous conjecture in communication complexity is the log-rank conjecture, which we
will look at next time. This conjecture implies:

Conjecture 1 (Consequence of Log-Rank Conjecture). The answer to the above problem is
YES.

There is some recent progress on this problem: Hirahara, Ilango, & Loff [HIL25] showed last
year that it is NP-hard to compute D(M). But their result leaves open the possibility that there is
a polynomial time algorithm for computing D(M) up to additive +1 error! However, “we” do not
believe there is one; indeed, we expect it to be NP-hard to approximate communication complexity
up to any constant factor:

Open Problem 2. Show that there is no polynomial-time algorithm which approximates
D(M) up to a constant-factor, unless P = NP.

5 Monochromatic Rectangles and Partition Number

A key concept in communication complexity is monochromatic rectangles (see e.g. the cover of the
textbook).
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Definition 5.1 (Rectangles). A combinatorial rectangle is a set R = X × Y where X and
Y are each sets, where the cartesian product × is defined by

X × Y ..= {(x, y) | x ∈ X, y ∈ Y.

Let M be a matrix with rows indexed by [m] and columns indexed by [n], and let R = X×Y
be a rectangle with X ⊆ [m] and Y ⊆ [n]. Let b be any value. Then R is b-monochromatic
for M if

∀(i, j) ∈ X × Y : M(i, j) = b.

We say a rectangleR ismonochromatic forM if there exists b such thatR is b-monochromatic.

Let’s see how monochromatic rectangles relate to communication protocols.

5.1 Properties of Protocols

Let M ∈ RX×Y be any matrix, let Π be any communication protocol computing M , and let T be
its communication tree.

Observation 5.2. For each input (x, y), there is a unique root-to-leaf path p(x, y) that Π takes
through T .

We say input (x, y) reaches node v of T if v is in the path p(x, y). For every node v of Π, define
the set

Rv
..= {(x, y) ∈ X × Y | Π on (x, y) reaches v}.

We may observe the following properties of protocols:

Proposition 5.3 (Properties of Protocols). Let M be a matrix with rows indexed by [m]
and columns indexed by [n], and let Π be a communication protocol computing M . For each
node v of Π:

1. Rv is a combinatorial rectangle;

2. If v is an inner node, let w1 and w2 be its children. Rv is a rectangle Rv = X × Y .
Then exactly one of these two statements holds:

(a) There is X ′ ⊂ X such that Rw1 = X ′ × Y and Rw2 = (X \X ′)× Y ; or

(b) There is Y ′ ⊂ Y such that Rw1 = X × Y ′ and Rw2 = X × (Y \ Y ′).

3. Let w ̸= v be another node. Then

(a) If w is an ancestor, then Rv ⊂ Rw.

(b) If w is a descendent, then Rw ⊂ Rv.

(c) Otherwise, Rv ∩Rw = ∅.

4. If v is a leaf node, then Rv is a monochromatic rectangle.

Proof sketch. Properties 1 and 2 hold by induction on the depth of node v (base case is the root
node). Property 3 follows from property 2. Property 4 holds by property 1 together with the fact
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that Π computes M . ■

Theorem 5.4 (Protocol Balancing). Let M be any matrix and let Π be a protocol computing
M . Suppose Π has ℓ leaves. Then there exists a protocol Π′ computing M with cost ≤
2 log3/2(ℓ).

Proof. We did not have time for this in class, so it will be an exercise in the homework. ■

5.2 Partition Number

Definition 5.5. Let M ∈ {0, 1}m×n. A monochromatic rectangle partition of M is a set
P = {R1, . . . , Rk} of disjoint rectangles Ri such that each rectangle is monochromatic in
M . The partition number χ(M) is the minimum k such that there exists a monochromatic
rectangle partition P of size |P| = k.

Theorem 5.6. For any M ∈ {0, 1}m×n,

log(χ(M)) ≤ D(M) ≤ O(log2(χ(M))).

Proof. For the lower bound, observe that the leaves of any protocol Π computing M correspond to
a monochromatic partition. Since there are at most 2d leaves in a protocol of depth d, we have

χ(M) ≤ 2D(M).

Let us now prove the upper bound. We prove the claim by induction on the partition number
k = χ(M). The base case is when k = 1, i.e. , M is monochromatic, and D(M) ≤ 1.

Now let k = χ(M) > 1, and let P = {R1, . . . , Rk} be a monochromatic partition of size k.
Write Ri = Xi × Yi for each i ∈ [k].

Alice and Bob are given inputs (x, y). Call a rectangle Ri x-good if at most 3k/4 rectangles Rj

satisfy Xj ∩Xi ̸= ∅, and x-bad otherwise. Similarly, call Ri y-good if at most 3k/4 rectangles Rj

satisfy Yj ∩ Yi ̸= ∅, and y-bad otherwise.

Claim 5.7. For all inputs x, y, the unique rectangle Ri ∈ P that contains x, y is either x-good or
y-good.

Proof of claim. Suppose Ri is both x-bad and y-bad. Then 3k/4 rectangles Rj = Xj × Yj satisfy
Xj∩Xi ̸= ∅, and 3k/4 rectangles Rj = Xj×Yj satisfy Yj∩Yi ̸= ∅. Then there exists Rj ̸= Ri such
that both Xj ∩Xi ̸= ∅ and Yj ∩ Yi ̸= ∅. But then Rj and Ri are not disjoint, a contradiction. ■

As a consequence of this claim, there must exist a rectangle Ri ∈ P containing (x, y) that is
either x-good or y-good. Alice and Bob may therefore communicate as follows:

1. Alice sends one bit to Bob to indicate whether there is an x-good rectangle Ri = Xi × Yi
where x ∈ Xi. If so, she uses ⌈log k⌉ bits to identify an arbitrary x-good rectangle. Both
players recurse on rows Xi of M .

2. If there is no x-good rectangle, then Bob uses ⌈log k⌉ bits to identify an arbitrary y-good
rectangle Ri = Xi × Yi. Both players recurse on columns Yi of M .
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Call the new matrix in the recursion M ′. In each case, M ′ has a monochromatic partition of size at
most 3k/4, because we may partition M ′ using only the rectangles in P that intersect the chosen
rows or columns.

If the protocol runs for r rounds, then the remaining matrix has partition number at most(
3
4

)r ≥ 1, so it must terminate in at most r = log4/3(χ(M)) rounds. In each round, at most
O(log(χ(M))) bits are transmitted between players. ■

Recall Theorem 1.5 from earlier, which said that the communication cost of Equality is n+1.
We may now prove this:

Proof of Theorem 1.5. Let M be the communication matrix for Eqn. We will show that χ1(M) =
2n (and χ0(M) > 0), so that

D(Eqn) ≥ log(χ(M)) > log(χ1(M)) = n.

Suppose for the sake of contradiction that k ..= χ1(M) < 2n, so there are k disjoint 1-chromatic
rectangles R1, . . . , Rk that contain all 2n diagonal entries of M . By the pigeonhole principle, there
are two distinct diagonal entries (i, i) and (j, j) of M contained in a single 1-chromatic rectangle
Rℓ. Then Rℓ also contains (i, j). But M(i, j) = 0 since i ̸= j, which contradicts the fact that Rℓ is
1-chromatic. ■
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